2019 年 17 巻 5 号 p. 216-231
Tensile fracture of fiber reinforced cement-based composites (FRCC) with rebar was investigated via a mesoscale analysis using discretized short fibers. Herein, the effects of fiber volume fraction, steel reinforcement ratio, FRCC–rebar bond characteristics, and fiber distribution on tensile fracture behavior were investigated. In some cases, localized crack was observed in the post-yield range of rebar. The localization mechanism was numerically explained and then inhibited by focusing on the bridging forces of the fibers and rebar. The effectiveness of steel reinforcement in enhancing the strain capacity of strain-hardening cement-based composites was confirmed. This paper is based on an original paper (Ogura et al. 2016) written in Japanese.